

(3). Pale yellow oil (238 mg). R_f 0.54 (silica gel, petrol-EtOAc, 17:3). $[\text{M}]^+$ found: 356.1629. $C_{21}\text{H}_{24}\text{O}_5$ requires 356.1624. $\nu_{\text{max}}^{\text{film}} \text{cm}^{-1}$: 1670 (C=O stretch). UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (e): 274 (12500), 228 (20319); $\lambda_{\text{max}}^{\text{MeOH+NaOH}}$ nm (e): 274 (12500), 228 (20319). MS m/z (rel. int.) 356 (7), 194 (100), 165 (27), 135 (16.9), 77 (10), 28 (11). $^1\text{H NMR}$ (60 MHz, CDCl_3) δ 7.32 (m, H-2, H-6), 6.85 (br s, H-5), 6.65 (br s, H-2', H-5', H-6'), 5.88 (s, O_2CH_2), 3.90 (s, OMe-3), 3.85 (s, OMe-4), 2.0-3.7 (m, H-7, H-7', H-8, H-8'), 1.15 (d, J = 6.5 Hz, Me-9), 0.85 (d, J = 6.5 Hz, Me-9'); $^1\text{H NMR}$ (220 MHz, CDCl_3) δ 7.45 (br s, H-2), 7.37 (dd, J = 9.5, 1.5 Hz, H-6), 6.84 (d, J = 9.5 Hz, H-5), 6.70 (m, H-2', H-5', H-6'). 5.94 (s, O_2CH_2), 3.95 (s, OMe-3), 3.90 (s, OMe-4), 3.38 (dq, J = 7.0, H-8), 2.58 (dd, J = 14.4, 7.8 Hz, H-7'), 2.43 (dd, J = 14.4, 7.8, H-7'), 2.25 (dddq, J = 7.8, 7, 7 and 7, H-8'), 1.15 (d, J = 7.0, Me-9), 0.85 (d, J = 7.0, Me-9'). $^{13}\text{C NMR}$ (100 MHz, CDCl_3) δ 129.7 (C-1), 110.5 (C-2), 148.9 (C-3), 152.9 (C-4), 109.9 (C-5), 122.4 (C-6), 202.4 (C-7), 42.8 (C-8), 14.8 (C-9), 55.7 (3-OMe), 55.8 (4-OMe), 134.5 (C-1'), 108.0 (C-2'), 147.4 (C-3'), 145.6 (C-4'), 109.4 (C-5'), 121.9 (C-6'), 37.4 (C-7'), 41.2 (C-8'), 11.2 (C-9'), 100.5 (3'- O_2CH_2 , 4'- O_2CH_2).

Acknowledgements—We thank the following for financial assistance: Multinational Chemistry Project of the Organisation of American States, The Fondo Colombiano de Investigaciones Científicas y Proyectos Especiales 'Francisco José de Caldas' (grant no. Colciencias, PI-10000-1-135-81), and the Comité de Investigaciones y Desarrollo Científico (grant no. Cindec, P1-1303-118).

REFERENCES

1. Cuca, S., L. E. and Martínez, V., J. C. (1984) *Rev. Colombiana Quím.* **13** (in press).
2. Gottlieb, O. R. (1978) *Fortschr. Chem. Org. Naturst.* **35**, 1.
3. Gottlieb, O. R. (1979) *J. Ethanopharmacol.* **1**, 309.
4. Kijjoa, A., Giesbrecht, A. M., Gottlieb, O. R. and Gottlieb, H. E. (1981) *Phytochemistry* **20**, 1385.
5. Lopes, L. M. X., Yoshida, M. and Gottlieb, O. R. (1982) *Phytochemistry* **21**, 751.
6. Wenkert, E., Gottlieb, H. E., Gottlieb, O. R., Pereira, M. and Formiga, M. D. (1976) *Phytochemistry* **15**, 1547.

FLAVONOIDS FROM *WYETHIA GLABRA*

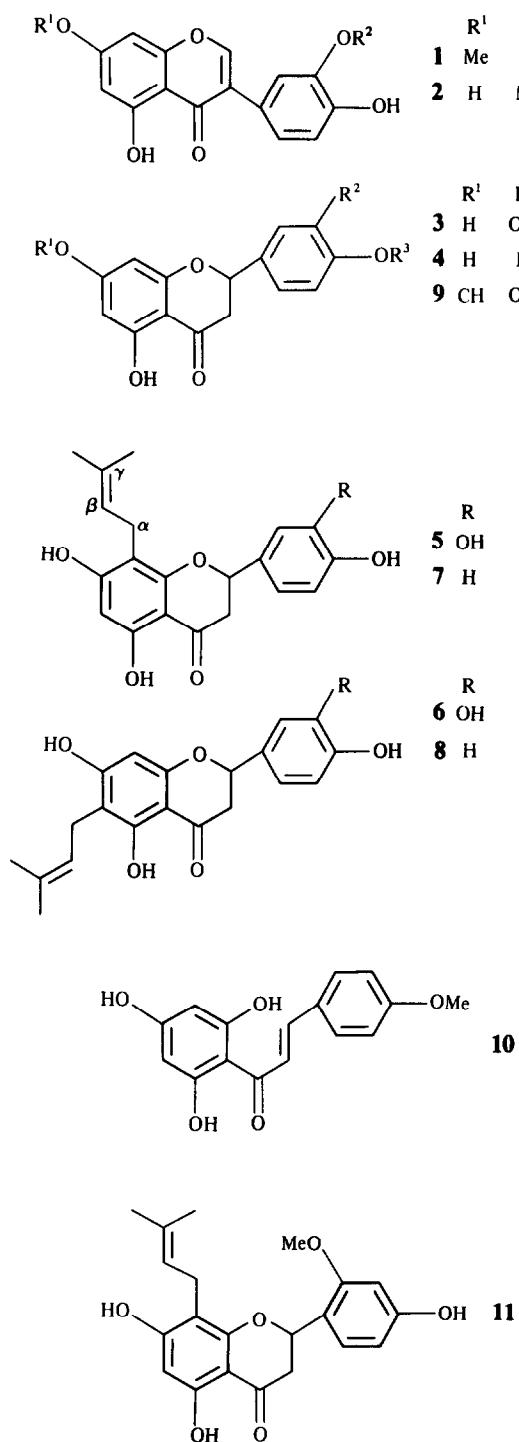
SUSAN MCCORMICK, KATHLEEN ROBSON and BRUCE BOHM

Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 2B1, Canada

(Revised received 3 October 1984)

Key Word Index—*Wyethia glabra*; Compositae; Heliantheae; prenylated flavanones; isoflavones; flavanones; chalcone.

Abstract—Ten flavonoid compounds, including three new natural products, were isolated from a dichloromethane extract of *Wyethia glabra*. The known compounds are: orobol 7-methyl ether, orobol 3'-methyl ether, naringenin 7-methyl ether, eriodictyol, 8-C-prenyleriodictyol, 6-C-prenyleriodictyol and 8-C-prenylnaringenin. Eriodictyol 7-methyl ether, 2',4',6'-trihydroxy-4-methoxychalcone and 6-C-prenylnaringenin are new natural products. An additional prenylated flavanone was isolated and partially characterized.


INTRODUCTION

As part of a chemical and morphological study on the related genera *Wyethia* and *Balsamorhiza* (tribe Heliantheae, subtribe Helianthinae), the leaf-surface flavonoids of *Wyethia glabra* Gray were examined. *Wyethia helenioides*, which is in the same section as *W. glabra*, produces 8-C-prenyleriodictyol, 6-C-prenyleriodictyol, 8-C-prenylnaringenin, orobol 7-methyl ether and orobol 3'-methyl ether [1]. From *W. glabra* besides these five compounds, 6-C-prenylnaringenin, eriodictyol, eriodictyol 7-methyl ether, naringenin 4'-methyl ether, 2',4',6'-trihydroxy-4-methoxychalcone and an additional 8-C-prenyflavanone have been found. Similar prenylated flavanones have been isolated from *Flourensia* [2], *Marshallia* [3] and *Helichrysum* [4].

RESULTS AND DISCUSSION

A dichloromethane leaf wash of *W. glabra* afforded orobol 7-methyl ether (10 mg) (1) [5], orobol 3'-methyl ether (10 mg) (2) [6], eriodictyol (10 mg) (3) [7], naringenin 4'-methyl ether (20 mg) (4) [8], 8-C-prenyleriodictyol (180 mg) (5) [1], 6-C-prenyleriodictyol (300 mg) (6) [1], 8-C-prenylnaringenin (50 mg) (7) [3], 6-C-prenylnaringenin (150 mg) (8), eriodictyol 7-methyl ether (5 mg) (9), 2',4',6'-trihydroxy-4-methoxychalcone (5 mg) (10) and a 8-C-prenyltrihydroxymonomethoxyflavanone (5 mg) (11).

The UV spectrum of 8 exhibited a major *A* of 295 nm which shifted to 325 nm after the addition of sodium methoxide. This is typical of a flavanone with a 5,7-hydroxylation pattern in the A-ring. The mass spectrum of

8 exhibited a molecular ion at m/z 340 consistent with a flavanone with three hydroxyl groups and one prenyl group. Losses of 15, 43 and 55 mass units from both the molecular ion and the A_1 fragment were consistent with the presence of a *C*-prenyl group [9]. The absence of a bathochromic shift in the UV spectrum after the addition of aluminium chloride suggested that the prenyl group was *ortho* to the 5-hydroxyl group [10]. The ^1H NMR proton in the ^1H NMR spectrum appeared at δ 6.03 and

was assigned to the 8-position. Two two-proton doublets at δ 7.25 and 6.76 supported a naringenin B-ring. From these data **8** was identified as 6-*C*-prenyl naringenin. The spectral data of **8** also correspond to those reported for synthetic 6-*C*-prenyl naringenin [11].

The UV spectrum of **9** exhibited a major *A* at 286 nm which shifted only 1 nm after the addition of sodium methoxide suggesting that **9** was a flavanone with a substituted 7-position. A bathochromic shift of 10 nm after the addition of aluminium chloride suggested that there was a hydroxyl group present at the 5-position. The mass spectrum exhibited a molecular ion at m/z 302 consistent with a flavanone with three hydroxyl groups and one methoxyl group. The presence of $[\text{B}_3]^+$ and $[\text{B}_4]^+$ fragments at m/z 136 and 123, respectively, confirmed a B-ring with two hydroxyl groups. An $[\text{A}_1 + 1]^+$ fragment at m/z 167 was consistent with an A-ring with one hydroxyl group and one methoxyl group. Compound **9** was, therefore, identified as eriodictyol 7-methyl ether. This compound has been isolated as an 8-*C*-prenyl derivative from *Flourensia heterolepis* [2].

The UV spectrum of **10** recorded in methanol exhibited a major *A* at 360 nm with a shoulder at 298 nm typical of a chalcone. A bathochromic shift of 26 nm after the addition of aluminium chloride suggested that there was a 2'-hydroxyl group. A shift of 30 nm with a decrease in intensity after the addition of sodium methoxide suggested that the 4-position was substituted. The ^1H NMR spectrum of **10** confirmed that it was a chalcone. Doublets with a large coupling constant at δ 8.15 and 7.80 were assigned to the α - and β -protons, respectively, and doublets at δ 7.4 and 6.95 were consistent with a monosubstituted B-ring. The remaining signals were a two-proton singlet at δ 5.96 and a three-proton singlet at δ 3.87. The mass spectrum of **10** exhibited a molecular ion at m/z 286 consistent with a chalcone with three hydroxyl groups and one methoxyl group. Since the UV data indicated the presence of a 2'-hydroxyl group, flavanone fragmentation was expected [12]. The appearance of $[\text{B}_3]^+$ and $[\text{B}_4]^+$ fragments at m/z 134 and 121, respectively, indicated that the B-ring had one methoxyl group. An $[\text{A}_1]^+$ fragment appeared at m/z 152 consistent with an A-ring with three hydroxyl groups. Since the A-ring protons appeared as a singlet, the hydroxyl groups were assigned to the 2', 4'- and 6'-positions. The observation that **10** over time converts to naringenin 4'-methyl ether (**4**) also supported the assignment of **10** as 4-methoxy-2',4',6'-trihydroxy-chalcone.

The UV spectrum of **11** in methanol exhibited major *A* at 289 and 271 nm. The addition of sodium methoxide and sodium acetate caused bathochromic shifts of 41 and 29 nm, respectively, consistent with a flavanone with a 5,7-hydroxylation pattern in the A-ring. A shift of 21 nm after the addition of aluminium chloride suggested that there was no prenyl substituent *ortho* to the 5-hydroxyl group. The mass spectrum exhibited a molecular ion at m/z 370 consistent with a flavanone with three hydroxyls, one methoxyl and one prenyl. Losses of 15, 43 and 55 mass units from the molecular ion confirmed the presence of a *C*-linked prenyl group. The appearance of an $[\text{A}_1 - 1]^+$ fragment at m/z 219 was consistent with an A-ring with two hydroxyl groups and one *C*-prenyl group. The presence of $[\text{B}_3]^+$ and $[\text{B}_4]^+$ fragments at m/z 150 and 137 and a $[\text{B}_3 - \text{Me}]^+$ fragment at m/z 135 indicated that the B-ring had one methoxyl and one hydroxyl group. The presence of a large $[\text{M} - 31]^+$ fragment suggested that the methoxyl was at the

2'-position [13]. Interpretation of the UV spectra does not give significant information about the B-ring of flavanones. Insufficient material was available for ¹H NMR analysis.

EXPERIMENTAL

Plant material. Leaves of *Wyethia glabra* were collected on 16 March 1984 in Solano Co., California (voucher No. 3223, M. Warnock, S. McCormick, deposited in UBC herbarium).

Extractions and separation. Air-dried leaves (30 g) were extracted overnight with CH₂Cl₂. The extract was taken to dryness and chromatographed over a Polyclar AT column using CH₂Cl₂-MeOH (3:1) and gradually increasing amounts of MeOH. Fractions from this column were further separated on Sephadex LH-20 (MeOH) columns and on polyamide TLC using: (1) ethyl formate-cyclohexane-n-BuOAc-HCO₂H (55:25:23:2); (2) toluene-petrol (80:100)-MeCOEt-MeOH (60:30:10:5); or (3) toluene-MeCOEt-MeOH (60:25:15). Isolated compounds were cleaned over Sephadex LH-20 columns prior to spectral analysis. Individual compounds were identified on the basis of UV, ¹H NMR and MS.

6-C-Prenylnaringenin (8) UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm: 350 sh, 295, + NaOMe 325, 255, + AlCl₃ 380 sh, 308, + AlCl₃-HCl 380 sh, 305, + NaOAc 324, 290 sh, + NaOAc-H₃BO₃ 337 sh, 288 ¹H NMR (90 MHz, TMS ether, CCl₄): δ 7.25 (2H, d, *J*_{2',3',5',6'} = 9 Hz, H-2', H-6'), 6.76 (2H, d, *J*_{2',3',5',6'} = 9 Hz, H-3', H-5'), 6.06 (1H, s, H-8), 5.15 (1H, dd, *J*_{2,3b} = 3.5 Hz, *J*_{2,3a} = 13 Hz, H-2), 5.05 (1H, t, *J* = 9 Hz, H- β), 3.15 (2H, d, *J* = 9 Hz, H- α), 2.80 (1H, dd, *J*_{3a,3b} = 17 Hz, *J*_{2,3a} = 12.5 Hz, H-3a) 2.53 (1H, dd, *J*_{3a,3b} = 17 Hz, *J*_{2,3b} = 3.5 Hz, H-3b) 1.65 (6H, br s, Me-2y). MS (probe, 70 eV): 340 [M]⁺ (62), 325 [M - Me]⁺ (24), 297 [M - C₃H₇]⁺ (43), 285 [M - C₄H₇]⁺ (50), 220 [A₁]⁺ (42), 205 [A₁ - Me]⁺ (77), 192 [A₁ - CO]⁺ (58), 177 [A₁ - C₃H₇]⁺ (65), 165 [A₁ - C₄H₇]⁺ (88), 120 [B₃]⁺ (67), 107 [B₄]⁺ (51)

Eriodictyol 7-methyl ether (9). UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm: 328 sh, 286, + NaOMe 287, 350 sh, + AlCl₃ 307, + AlCl₃-HCl 305, 370 sh. MS (probe, 70 eV): 302 [M]⁺ (84), 193 [M - B-ring]⁺ (82), 167 [A₁]⁺ (100), 136 [B₃]⁺ (94) 123 [B₄]⁺ (64).

2',4',6'-trihydroxy-4-methoxychalcone (10). UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm: 360, 296 sh, + NaOMe 390, 320, + AlCl₃ 395, 310, + AlCl₃-HCl 386, 308. MS (probe, 70 eV): 286 [M]⁺ (45). ¹H NMR (90 MHz, Me₂CO-*d*₆): δ 8.15 (1H, d, *J* _{α , β} = 15 Hz, H- α), 7.75 (1H, d, *J* _{α , β} = 15 Hz, H- β), 7.63 (2H, d, *J*_{2',3',5',6'} = 9 Hz, H-2', H-6'),

6.97 (2H, d, *J*_{2',3',5',6'} = 9 Hz, H-3', H-5'), 3.87 (3H, s, OMe) MS (probe, 70 eV): 286 [M]⁺ (45), 179 [M - B-ring]⁺ (17), 134 [B₃]⁺ (99), 121 [B₄]⁺ (91), 152 [A₁]⁺ (37).

8-C-Prenyltrihydroxymonomethoxyflavanone (11). UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm: 289, 271, + NaOMe 330, 285 sh, 247, + AlCl₃ 310, 271, + AlCl₃-HCl 310, 271, + NaOAc 328, 271. MS (probe, 70 eV): 370 [M]⁺ (21), 355 [M - Me]⁺ (8), 339 [M - CH₃O]⁺ (26), 327 [M - C₃H₇]⁺ (6), 315 [M - C₄H₇]⁺ (10), 219 [A₁ - 1]⁺ (12), 205 [A₁ - Me]⁺ (41), 177 [A₁ - C₃H₇]⁺ (47), 165 [A₁ - C₄H₇]⁺ (60), 150 [B₃]⁺ (28), [B₄]⁺ (28), [B₃ - Me]⁺ (45).

Acknowledgements—This work was supported by a grant from the Natural Science and Engineering Research Council of Canada. We should like to thank Mr. Felipe Balza for recording the mass spectra.

REFERENCES

- Bohlmann, F., Zdero, C., Robinson, H. and King, R. M. (1981) *Phytochemistry* **20**, 2245.
- Bohlmann, F. and Jakupovic, J. (1979) *Phytochemistry* **18**, 1189
- Bohlmann, F., Zdero, C., King, R. M. and Robinson, H. (1979) *Phytochemistry* **18**, 1246.
- Bohlmann, F. and Ates (Goren), N. (1984) *Phytochemistry* **23**, 1338
- Akisanya, A., Bevan, C. E. L. and Hirst, J. (1959) *J. Chem. Soc.* 2679
- de Almeida, M. E. L. and Gotlieb, O. R. (1974) *Phytochemistry* **13**, 751
- Waterman, P. G. and Crichton, E. G. (1980) *Phytochemistry* **19**, 1187
- Ghosal, S., Jaiswal, D. K. and Biswas, K. (1978) *Phytochemistry* **17**, 2119.
- Rama Rao, A. V., Rathi, S. S. and Venkataraman, K. (1972) *Ind. J. Chem.* **10**, 989.
- Sherif, E. A., Gupta, R. K. and Krishnamurti, M. (1980) *Tetrahedron Letters* **21**, 641.
- Jain, A. C., Khazanchi, R. and Kumar, A. (1978) *Tetrahedron* **34**, 3569
- Van de Sande, D., Serum, J. W. and Vandewalle, M. (1972) *Org. Mass Spectrom.* **6**, 1333
- Filho, R. D. and Gotlieb, O. R. (1971) *Phytochemistry* **10**, 2433.